Tight sets and m-ovoids of finite polar spaces
نویسندگان
چکیده
منابع مشابه
Tight sets and m-ovoids of finite polar spaces
An intriguing set of points of a generalised quadrangle was introduced in [2] as a unification of the pre-existing notions of tight set and m-ovoid. It was shown in [2] that every intriguing set of points in a finite generalised quadrangle is a tight set or an m-ovoid (for some m). Moreover, it was shown that an m-ovoid and an i-tight set of a common generalised quadrangle intersect in mi point...
متن کاملTight sets, weighted m -covers, weighted m -ovoids, and minihypers
Minihypers are substructures of projective spaces introduced to study linear codes meeting the Griesmer bound. Recently, many results in finite geometry were obtained by applying characterization results on minihypers [8, 17, 18]. In this paper, using characterization results on certain minihypers, we present new results on tight sets in classical finite polar spaces and weighted m-covers, and ...
متن کاملTight sets and m-ovoids of generalised quadrangles
The concept of a tight set of points of a generalised quadrangle was introduced by S. E. Payne in 1987, and that of an m-ovoid of a generalised quadrangle was introduced by J. A. Thas in 1989, and we unify these two concepts by defining intriguing sets of points. We prove that every intriguing set of points in a generalised quadrangle is an m-ovoid or a tight set, and we state an intersection r...
متن کاملPartial ovoids and partial spreads of classical finite polar spaces
We survey the main results on ovoids and spreads, large maximal partial ovoids and large maximal partial spreads, and on small maximal partial ovoids and small maximal partial spreads in classical finite polar spaces. We also discuss the main results on the spectrum problem on maximal partial ovoids and maximal partial spreads in classical finite polar spaces. 1 Classical finite polar spaces Th...
متن کاملA CLASSIFICATION OF TRANSITIVE OVOIDS, SPREADS, AND m-SYSTEMS OF POLAR SPACES
Many of the known ovoids and spreads of finite polar spaces admit a transitive group of collineations, and in 1988, P. Kleidman classified the ovoids admitting a 2-transitive group. A. Gunawardena has recently extended this classification by determining the ovoids of the seven-dimensional hyperbolic quadric which admit a primitive group. In this paper we classify the ovoids and spreads of finit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2007
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2007.01.009